Uranium mill tailings management plan

For managing Title I uranium mill tailings encountered during construction activities in western Colorado.

Updated June 2019
Table of contents

Introduction 3
Management of uncontrolled uranium tailings 7
Interim storage facility 9
Responsibilities 12
Health and safety 20
Training 24
Excavation procedures 25
Transport of tailings 30

Appendix A: Definitions 32
Appendix B: Frisking and decontamination procedures 34
Appendix C: Building permit surveys 37
Appendix D: Gamma radiation survey procedures 39

For information or assistance, contact:

Colorado Department of Public Health and Environment
222 South 6th Street, Room 232
Grand Junction, Colorado 81501
(970) 248-7164
Introduction

Purpose
In 1978, the U.S. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA Public Law 95-604) which tasked the U.S. Department of Energy with stabilizing, disposing, and controlling uranium mill tailings and other contaminated material at 24 inactive uranium processing (mill) sites located in ten different states, where uranium was processed for sale to a federal agency. Nine of the inactive uranium processing sites are located in Colorado. These Title I sites (referred to as “Title I” because the sites were listed in Title I of the law) were located in Grand Junction, Gunnison, Rifle (2), Durango, Maybell, Naturita and Slick Rock (2). While the active cleanup required by UMTRCA has been completed, residual uranium mill tailings remain in the nine affected communities. These residual tailings deposits are referred to as “UMTRA Title I uranium mill tailings” throughout this plan, in order to clearly delineate that this plan pertains only to radioactive materials that originated from UMTRA Title I mill sites.

The Colorado Department of Public Health and Environment is authorized by Colorado Revised Statutes (C.R.S. 25-11-301 et. seq.) to assist local governments in the identification and management of uranium mill tailings remaining in western Colorado communities. Because tailings deposits are often associated with utility rights-of-ways and private property, this plan is also designed to assist utilities and private parties in the identification, proper handling and disposal of uranium mill tailings.

The purpose of this plan is to describe responsibilities and procedures for managing UMTRA Title I uranium mill tailings encountered or disturbed during construction activities in the nine UMTRA communities in western Colorado. All work procedures are designed to minimize worker contact with radioactive materials and comply with the ALARA principle, keeping radiation exposures As Low As Reasonably Achievable. All work will be performed in accordance with the Colorado Rules and Regulations Pertaining to Radiation Control, (Regulations) 6CCR-100-7, current version.

History
Beginning around the turn of the century, exploration for ore deposits bearing radioactive elements began in the United States. Western Colorado and adjoining states in the Four Corners area, being rich in these deposits, were heavily prospected. Radium was the primary radioactive element of interest produced by the early mines and mills, followed by exploration for, and production of vanadium, which occurs in the same geologic ores. Then, in the
1940s, the demand for uranium rapidly grew as research progressed for development of atomic weapons and energy. After World War II, the continued research, nuclear reactor use and the arms race accelerated the demand for uranium, which produced a uranium boom lasting through the 1950s and into the 1960s.

Many hundreds of mines were explored and often developed for ores. Many mill pilot plants, and later operating mill sites, were built to crush ore and separate uranium compounds from the waste materials. The mills produced a uranium product called “yellowcake” and waste tailings sands. These tailings contained most of the original natural radioactivity of the ore, since only one of the radioactive constituents was recovered in the milling process.

The waste tailings were piled at the mills, but erosion from wind and water invariably spread the tailings to adjacent areas. In addition, tailings from many of the mills were transported off site and used for construction or as fill materials. As the mills fell into disuse and obsolescence, and as the uranium boom faded, more of the tailings were eroded away or removed for construction.

The Public Health Service and the Colorado Department of Health conducted studies that demonstrated the magnitude of the health-related issues caused by the presence of uranium mill tailings in residential areas. Health effects result from exposure to gamma radiation, inhalation of radioactive particles and from radon gas, produced by natural radioactive breakdown of radium contained in the tailings. In places where uranium mill tailings were used for construction, radon can seep into buildings (homes, offices, schools) and can build up to high concentrations. Many research studies have demonstrated that people breathing air containing elevated levels of radon are at greater risk of lung cancer.

The Public Health Service documented the association between elevated radon and lung cancer during uranium mine studies conducted in the 1950s. In the 1960s, the Colorado Department of Health and the Public Health Service expanded the studies to include areas around mill sites. The studies concluded that excessive radiation exposure could result from indiscriminate use of tailings and that persons were at increased risk due to the presence of the uranium mill tailings. By this time, thousands of tons of tailings from the uranium mills had been used in commercial and residential areas for construction. In Grand Junction, Colorado, mill tailings from the former Climax Mill Site, which had been spread throughout the community, were identified as a health risk and the Colorado Department of Health soon issued an order to cease the use of tailings in construction.

Because of the availability and many possible uses of the sandy uranium mill
tailings as a building material, the dispersal and misuse was widespread. Some examples of uranium mill tailings use were: soil attenuation, concrete mix, bedding for concrete and utilities, stucco, and brick production.

Experience has shown that as construction and demolition activities occur, new uranium mill tailings deposits will be discovered and disturbance of known deposits will occur. New construction close to such deposits increases potential public exposure to gamma radiation and radon.

Grand Junction Remedial Action Program
Concerns about the health risks and property values grew as the extent of the uranium mill tailings misuse became public. Nationwide publicity announced and often exaggerated the problem. Congressional hearings were conducted, and in 1972, Public Law 92-314 created the Grand Junction Remedial Action Program to reduce radiation exposures inside structures affected by uranium tailings in the Grand Junction community. The U.S. Surgeon General published cleanup guidelines for the voluntary project. During the 15-year program, 594 structures in Mesa County underwent remedial action, where the radioactive material was removed by government contractors.

Uranium Mill Tailings Remedial Action Program
From the late 1960s, it was known that the misuse of uranium tailings was not unique to the Grand Junction, Mesa County area. In 1978, the U.S. Congress passed Public Law 95-604, the Uranium Mill Tailings Radiation Control Act (UMTRCA). This law enabled the creation of the Uranium Mill Tailings Remedial Action Project and required the U.S. Environmental Protection Agency to develop cleanup standards. The U.S. Department of Energy was responsible for stabilizing, disposing, and controlling uranium mill tailings and other contaminated material in cooperation with states and tribes. The project extended the assessment and cleanup of uranium mill tailings nationwide for both structure interiors and exterior deposits. By the conclusion of the Uranium Mill Tailings Remedial Action Program in 1998, approximately 5,000 properties and nine uranium mill sites had been cleaned up in Colorado. In Colorado alone, approximately 15 million cubic yards of uranium tailings were removed to controlled disposal sites.

Nine uranium mill sites in western Colorado qualified for remedial action under Title I of the Uranium Mill Tailings Remedial Action Program. These Title I sites were located in Grand Junction, Gunnison, Rifle (2), Durango, Maybell, Naturita and Slick Rock (2). These were inactive or abandoned sites, which had sold uranium to the U.S. Atomic Energy Commission exclusively. The Department of Energy performed site assessments and environmental impact studies and
developed options for permanent, environmentally safe disposal of the contaminated materials.

Disposal cells were designed and constructed to comply with strict criteria regarding ground water protection, seismology, erosion protection, settlement and infiltration. The cells were designed to last for 200 to 1,000 years. Therefore, erosion resistant, natural materials were used in the construction of the cells. The typical cell was excavated into low permeability bedrock and filled with compacted uranium mill tailings. A very low permeability layer was added on top of the uranium mill tailings as a cover to contain the radon gas and limit the entry of water. An erosion resistant rock layer capped the cells.

All of the Colorado Title I disposal cells, except for the Maybell site in Moffat County, were located away from the mill sites to situate the tailings out of floodplains and away from shallow ground water. The Maybell tailings pile was reengineered and reworked to provide compaction and erosion protection and capped in place. All of the disposal cells are monitored and maintained under the Long Term Surveillance and Maintenance Program managed by the Department of Energy.

The Title I disposal cell for Mesa County, known as the Grand Junction Disposal Facility (GJDF) at 4800 Hwy 50 Whitewater, CO will remain open to receive tailings from all UMTRA Title I communities until at least 2023. (The GJDF was formerly known as the Cheney Disposal Site or Cell.) Recognizing the need for long term management and storage of the remaining uncontrolled tailings, Congress revised the Uranium Mill Tailings Radiation Control Act in 1996 to allow for continued use of the GJDF. The Department of Energy will continue to maintain, operate and fund the GJDF cell. The GJDF cell is the only Uranium Mill Tailings Remedial Action Program site remaining open and available to receive uranium tailings.
Management of uncontrolled Title I uranium mill tailings

Uncontrolled Title I uranium mill tailings

Despite widespread publicity, two cleanup programs extending over 25 years, and thousands of property investigations, Title I uranium mill tailings remain in several western Colorado communities. It is suspected that up to half a million cubic yards of tailings remain outside of the controlled disposal cells.

Over 70,000 properties have been surveyed in Colorado for uranium mill tailings. Because of the voluntary nature of the project and difficulty in finding hidden, shielded deposits such as those beneath soils or under foundations, not all properties were investigated and not all deposits were found. Also, in some circumstances an owner refused to participate in the cleanup project after tailings were found on their property.

In addition to tailings that were never detected, or those where the owner refused cleanup, there were several other situations where tailings were left in place, including 1) Tailings excluded from exterior removals; 2) Tailings excluded from interior removals and 3) Supplemental Standards areas. All of these situations, explained in detail below, represent potential instances where tailings may be uncovered and require safe management in the future.

Tailings excluded from exterior removals

The Environmental Protection Agency standards for exteriors allowed measurements of radiation exposure to be averaged over 100 square meters. Thus, a small area of elevated contamination was often averaged with uncontaminated areas, resulting in small quantities of uranium mill tailings being left in place. The Colorado Department of Public Health and Environment now advises/recommends that all areas of elevated concentrations (also known as “hot spots”) be removed from the construction footprint plus a ten-foot buffer area, in order to minimize future exposure to the hot spot and/or further spreading of the tailings material during future construction activities.

Tailings excluded from interior removals

The Environmental Protection Agency standards for interiors addressed the interior average gamma exposure rate and the annual average radon levels. Contaminated structural materials, such as foundations or tailings under slabs, were often left in place if the interior radiation levels were below the standards.
The state advises removal of all tailings from under slabs or structures.

Supplemental standards

The Environmental Protection Agency cleanup standards allowed for a variance from meeting standards in certain situations. This variance was called “supplemental standards.” The most common use of supplemental standards was in situations where the cost of tailings removal was greater than the health risks associated with leaving the tailings deposit in place. The use of supplemental standards resulted in tailings being left in place. Approval of supplemental standards by the Colorado Department of Public Health and Environment and the Nuclear Regulatory Commission required that the deposit was in such an area that current and future land use would result in minimal radiation exposures to the public. Often, when supplemental standards were used, some partial removal would take place to remove surface contamination, but leave uranium mill tailings at depth. Records of supplemental standards applications are available from the Colorado Department of Public Health and Environment.

Examples of areas containing uranium mill tailings left in place through the application of supplemental standards include railroad tracks, city streets and curb/gutter, steep slopes, river islands, basements, patios, currently uninhabited structures, and utility lines. Grand Junction, Colorado, has the greatest number of supplemental standards areas, but supplemental standards deposits also exist in the Maybell, Durango, Rifle, Gunnison, Naturita and Slick Rock communities.

Tailings management plan

The laws and regulations pertaining to UMTRA Title I materials did not anticipate the impacts on new construction projects or changes in land use when residual tailings were left in place after the remediation projects were completed. Thus, there is a need for a long-term management plan to help guide persons who may contact residual Title I tailings materials. This management plan is designed to be relatively simple and easy to use. The main elements of the management plan include:

1) the availability of an interim storage facility, useable by local governments, utilities and private parties on short notice,
2) the assignment of responsibilities,
3) health and safety concerns, including procedures to limit radiation exposure
4) training requirements and responsibilities,
5) procedures for excavation and transportation, and
6) the availability of a long-term disposal site.

These elements are addressed in the following sections.
The general process related to uncontrolled tailings is outlined as follows, and discussed in greater detail in the following sections. A property owner, owner’s representative, interested party, or realtor requests information about a property from the Colorado Department of Public Health and Environment, either for a property transaction or a building permit application. Available records are provided to the requestor at that time. If there is a question about whether or not tailings may be present, the Colorado Department of Public Health and Environment may be requested to conduct a new gamma radiation survey. If tailings are present on the property, the Colorado Department of Public Health and Environment will provide a recommendation and information regarding the procedures for removing the material, following this plan. The removal of the material may be conducted by the property owner (referred to later in this plan as “private citizen”) or through the use of a contractor. Local governments may also conduct tailings removals. The tailings are removed from the property, following the procedures outlined in this plan, and hauled to the Interim Storage Facility. Once the materials are safely stored and the vehicle and personnel have been decontaminated and released by the Colorado Department of Public Health and Environment, the materials are stored until the Grand Junction Disposal Facility is opened to accept material. The material is then hauled to the Disposal Facility by the City of Grand Junction. The Department of Energy requires compliance with the Waste Acceptance Criteria for the Grand Junction Disposal Site (most recent version).

Interim storage facility

The facility
The Interim Storage Facility (ISF) is a temporary holding area for uranium mill tailings. The facility is owned by the City of Grand Junction and operated in coordination with the Colorado Department of Public Health and Environment. The facility is located at 333 West Avenue, Grand Junction, Colorado.

The ISF provides a temporary, secure, and safe storage for uranium mill tailings excavated during construction activities in Colorado communities. Access to the ISF is facilitated through the Colorado Department of Public Health and Environment or the City of Grand Junction. The tailings will ultimately be transported to the Grand Junction Disposal Facility (GJDF) south of Grand Junction, Colorado. This transfer is scheduled as needed.

The interim storage facility consists of an abandoned sewage treatment plant clarifier that is 75 feet in diameter and surrounded by concrete walls approximately 10 feet high. The bottom is a concrete slab. A slot has been cut
through the walls wide enough to admit a dump truck. A concrete ramp provides access to the entrance. A lockable gate protects the entrance. All holes in the bottom were sealed to make a water-tight storage area.

The facility also includes a shed for storage of records regarding materials brought to the ISF. The city provides a water line extension for decontamination spray or dust control upon request.

The Colorado Department of Public Health and Environment is responsible for access control, decontamination, and maintenance of records regarding materials brought to the ISF. If department personnel are not available, such as during an emergency water main break, the City of Grand Junction may assume these duties. Prior to accessing the ISF, the Colorado Department of Public Health and Environment will arrange for someone to meet the truck and provide a radiation meter for frisking and decontamination. Supervision of unloading, decontamination of vehicles and personnel after Colorado Department of Public Health and Environment working hours is the responsibility of the City of Grand Junction, which is the only entity authorized to access the facility after hours.

Unloading
The hauling truck will back into the facility to place the load as close as possible to the back wall or near already placed material. The driver should prevent tires from coming in contact with contaminated materials in order to reduce the need for decontamination. Material brought to the interim storage facility must be sized as small as possible to allow for compaction at the Grand Junction Disposal Facility site. No debris may exceed 3 feet cubed. Pipes must be shorter than the width of the truck bed or trailer used to transport the material. Waste brought to the ISF should be in compliance with the Department of Energy’s Waste Acceptance Criteria for the Grand Junction Disposal Site (most recent version). No uncovered loads may be brought to the ISF unless all transported contamination is in a solid form, such as bound in concrete (see Hauling).

Decontamination
The truck bed will be inspected for visible uranium mill tailings contamination, soil and debris remaining after dumping. Material that did not dislodge will be pushed out with shovels or brooms. The truck will then proceed to the entrance for inspection of tires and undercarriage. All visible or measurable contamination will be removed from the tires and undercarriage.

Any use of the interim storage facility will be recorded. The logbook will be kept in the facility shed. Logbook records will be transferred to the Colorado Department of Public Health and Environment office quarterly for permanent storage. The following information is required for every load brought to the ISF:
Date
Origin of contamination (street address)
Estimated cubic yardage
Name of driver/Company
Truck identification (license number)
Inspection for hazardous wastes
High gamma meter reading of the material
Time in and out of the facility
Decontamination status/notes/information

The truck tires and tailgate will undergo frisking according to the frisking procedure in Appendix B. If the tailgate or tires will not pass the frisking limits, the water hose will be used to further decontaminate the vehicle. If material cannot be dislodged from the bed, it can also be sprayed out at this point. After washing, the vehicle will again be frisked. All water or dislodged material will drain into the interim storage facility. No uranium mill tailings contamination shall be allowed to escape containment within the facility walls.

Individuals that have had physical contact with uranium mill tailings will have all visible contamination removed by sweeping. The individual will undergo a full body frisk with the frisking meter. If the frisking limits are exceeded, further sweeping or washing will occur, followed by another frisking. If clothing will not decontaminate visibly or pass the frisking survey, the clothing will be changed out in the storage shed. Contaminated clothing will be left at the ISF for disposal.

Once decontamination is deemed complete by the Colorado Department of Public Health and Environment, and the logbook has been filled out, the truck and users may leave the interim storage facility access area. All materials used in decontamination will be returned to the shed. The gate and shed will be secured. The final determination that all procedures, including decontamination, have been completed according to the protocols is the responsibility of the Colorado Department of Public Health and Environment.
Responsibilities

The Colorado Department of Public Health and Environment

The Colorado Department of Public Health and Environment is responsible for the overall oversight of the Title I Uranium Mill Tailings Management Plan. The department has more than 40 years experience in the management of uranium mill tailings, including expertise in radiation protection, clean up programs, record keeping, public information and health physics.

Colorado Department of Public Health and Environment’s responsibilities include:

1) Maintaining, updating and sharing records and documentation
2) Conducting inspections
3) Conducting excavation control
4) Providing technical expertise
5) Overseeing use of the ISF
6) Providing instrumentation

Public records and documentation

The Uranium Mill Tailings Management Plan will be used for technical information and field guidance. The Colorado Department of Public Health and Environment is responsible for the maintenance, distribution and revision of this plan.

The Colorado Department of Public Health and Environment will maintain and update uranium mill tailings records available to the general public and local government agencies. The Colorado Department of Public Health and Environment will produce or update property records as the conditions change due to excavation of uranium mill tailings. The Colorado Department of Public Health and Environment will provide personnel to interpret records and give health risk information to the public regarding the presence of uranium mill tailings on properties.

The Colorado Department of Public Health and Environment will keep records of
Title I uranium mill tailings excavated, received at the interim storage facility, and transported to Grand Junction Disposal Facility. The Colorado Department of Public Health and Environment will maintain records for decontamination of personnel and equipment.

Inspections
The Colorado Department of Public Health and Environment will perform inspections of new building areas and demolition sites for all pertinent building permits in Mesa County. All properties in Mesa County are to be monitored for the presence of mill tailings by the Colorado Department of Public Health and Environment, and if any are detected they are to be removed from all building sites before new construction commences.

For the UMTRA Title I communities outside of Grand Junction/Mesa County, the Colorado Department of Public Health and Environment will keep available Title I uranium mill tailings records and coordinate inspections of new construction in other communities as time permits and as requested.

Excavation control
The Colorado Department of Public Health and Environment will provide excavation control for uranium mill tailings removals by private parties, contactors and government agencies by request.

Tailings commingled with other wastes cannot be hauled to the ISF or to the GJDF, as these materials are not in compliance with the Department of Energy’s Waste Acceptance Criteria for the Grand Junction Disposal Facility. The Colorado Department of Public Health and Environment will conduct inspections, prior to tailings removal and at the ISF, for the presence of hazardous wastes that could be commingled with uranium mill tailings. The Colorado Department of Public Health and Environment will provide expertise on segregation, testing and storage of commingled waste. The Colorado Department of Public Health and Environment will provide documentation to the Department of Energy that materials transported to the Grand Junction Disposal Facility do not contain commingled waste.

Technical expertise
The Colorado Department of Public Health and Environment will provide technical expertise to communities, local governments or private parties in identification, handling and management of Title I uranium mill tailings.

Interim storage facility
The Colorado Department of Public Health and Environment will routinely manage operations and record keeping at the interim storage facility. The Colorado Department of Public Health and Environment will conduct radiological
surveys of the interim storage facility to ensure its proper operation and containment of material. Spot checks will occur during heavy use, high winds or rain.

Radiological survey instruments
The Colorado Department of Public Health and Environment will provide radiological survey instruments on loan to local governments and private parties on an as-needed basis. The Colorado Department of Public Health and Environment will maintain and calibrate the instruments annually as budgets allow and provide training in the use of the instruments.

Training
The Colorado Department of Public Health and Environment will provide training and on-site safety briefings upon request to workers excavating tailings. The Colorado Department of Public Health and Environment will be available to explain technical problems, options, radiation health risks or any part of the Uranium Mill Tailings Management Plan. The “Training” section of this plan describes the safety training in more detail.

Local governments and public utilities
The local governments and public utilities are responsible for following the procedures in this plan, designed to locate residual uranium mill tailings in construction areas, and to excavate and transport contaminated material while minimizing impact and radiation exposure. The local governments and utilities recognize that cooperation and coordination between the Colorado Department of Public Health and Environment, the Department of Energy, utilities, and local governments is paramount. All parties recognize and understand that some inconvenience and costs are involved in the proper handling and disposal of residual uranium mill tailings.

Training
Local governments and utilities will require and assign radiation training as required under this plan for workers potentially exposed to ionizing radiation.
from uranium mill tailings. Training requirements are described later in this document.

Costs
The costs of excavation, handling and transporting of uranium mill tailings by local governments and public utilities will be borne by these entities. Local governments may apply for grants to cover these costs in accordance with HB 97-1248, through the Colorado Department of Local Affairs and the Associated Governments of Northwest Colorado.

Enforcement of procedures
Local governments and public utilities will be responsible for monitoring and enforcing the procedures for workers under their direct control. Supervisors will observe operations and enforce the written procedures of the Uranium Mill Tailings Management Plan, and the Colorado Rules and Regulations Pertaining to Radiation Control.

Point of contact
Local governments and public utilities will identify personnel responsible for contact and coordination with the Colorado Department of Public Health and Environment.

Instruments
Local governments and public utilities will maintain the radiological detection instruments provided on loan by the Colorado Department of Public Health and Environment in good working order. The instruments are expensive and require proper care and usage. The instruments will be kept on hand for ease of checking potentially contaminated areas. The instruments will be returned to the Colorado Department of Public Health and Environment annually for calibration.

Surveys must be performed in accordance with Appendix D and Colorado Department of Public Health and Environment training.

Hazardous waste
Local governments and public utilities will notify the Colorado Department of Public Health and Environment of unusual coloration, smells, or materials such as car batteries or transformers discovered in excavations. Coordination with the Colorado Department of Public Health and Environment shall be made prior to the removal of such materials or soils, as they may contain hazardous substances which require special storage, handling or treatment if excavated. For demolition debris, a certified asbestos inspector should be used to determine the presence or absence of asbestos contamination if it is suspected. If hazardous material is suspected it should be analyzed by a qualified inspector.
Hazardous material may not be taken to the interim storage facility. If hazardous material is taken to the interim storage facility by any local government or public utility, that entity will be responsible for removing the hazardous waste and associated tailings within 30 days of being so notified and manage the material in accordance with all federal, state and local requirements. The Hazardous Materials and Waste Management Division technical assistance line (303) 692-3320 is available to provide instructions on how to manage the waste. All materials brought to the ISF must comply with the Department of Energy’s Waste Acceptance Criteria for the Grand Junction Disposal Facility (most recent version.)

Records check
Local governments and public utilities are responsible for checking available records or maps prior to a planned excavation activity. Local governments and public utilities should plan in advance for managing potential worker exposures and mill tailings management. Up-front knowledge of tailings locations will also enable them and their subcontractors to develop a more accurate cost estimate. The Colorado Department of Public Health and Environment has copies of the supplemental standards database to assist in locating tailings deposits. The Colorado Department of Public Health and Environment also retains records for tens of thousands of properties that were assessed or cleaned up before, during and after the Uranium Mill Tailings Remedial Action Program.

Permits
Construction activities in public right-of-ways are controlled by local governments through the issuance of permits. Work permitted in an area of known tailings involvement will have the statement “tailings procedures in effect” written on the work order and will include a requirement for coordination with the Colorado Department of Public Health and Environment.

Excavation control
The local governments and public utilities supervising excavations into deposits of uranium mill tailings will minimize over-excavation. Over-excavation is the removal of uncontaminated materials or mixing of uncontaminated materials with uranium tailings for transport to the interim storage facility. Over-excavation is controlled by radiological surveys and segregation of contaminated and uncontaminated material. In most cases, tailings deposits are small and localized. For such situations, a small excavator is the appropriate equipment for this type of removal. In general, the size and capacity of the excavator should match the size of the job. The excavation tool should fit the job to prevent over excavation.
Interim storage facility

The City of Grand Junction will be responsible for providing and maintaining the infrastructure necessary for operation of the interim storage facility (ISF), including an operating water line. The city will provide a gate and lock for security of the ISF. The city will also consolidate stockpiles within the ISF as requested by the Colorado Department of Public Health and Environment. No material will enter the ISF without proper documentation completed and stored in the ISF shed. All non-city generated material will be cleared through the Grand Junction UMTRA Colorado Department of Public Health and Environment office prior to placement in the ISF.

Transport to the Grand Junction Disposal Facility

The City of Grand Junction will be responsible for transport of the uranium mill tailings to the Department of Energy disposal site from the interim storage facility. All training and procedures required by the Department of Energy for entering the Grand Junction Disposal Facility site (GJDF) will be adhered to. In cases of large quantities, the Colorado Department of Public Health and Environment may arrange for direct transport of the material from the excavation to the GJDF cell. In these cases, the property owner is responsible for transportation. Transportation must meet the requirements of the Colorado Rules and Regulations Pertaining to Radiation Control Part 17 and Colorado Department of Transportation requirements. In addition, all material hauled to the GJDF must meet the Waste Acceptance Criteria for the Grand Junction Disposal Facility, as established by the Department of Energy.

The U.S. Department of Energy

Operation of the Grand Junction Disposal Facility

The Department of Energy is responsible for providing resources and coordination necessary to receive uranium mill tailings at the GJDF periodically from the stockpile at the interim storage facility.

The Department of Energy is responsible for providing resources and coordination necessary to receive uranium mill tailings at the GJDF during large planned construction projects, such as sewer line replacement in a supplemental standards area. Planned disturbance of large quantities of uranium mill tailings may be trucked directly to the GJDF without using the interim storage facility, if
approved by the Department of Energy.

The Department of Energy is also responsible for developing and maintaining the Waste Acceptance Criteria for the Grand Junction Disposal Facility and for assuring that any changes to the criteria are communicated to the Colorado Department of Public Health and Environment.

Long term surveillance and maintenance
The Department of Energy is responsible for the long-term surveillance and maintenance of the Grand Junction Disposal Facility. All costs associated with the operation and maintenance of Grand Junction Disposal Facility is at Department of Energy expense.

Contact person
The Department of Energy shall provide a point of contact for coordinating and planning between local governments, utilities and the Colorado Department of Public Health and Environment. The point of contact will receive any reports that the Department of Energy requires.

Maps
The Department of Energy will provide maps delineating supplemental standards areas to the Colorado Department of Public Health and Environment and local governments.

Private property owners
In Mesa County, private parties or their contractors will notify the Colorado Department of Public Health and Environment of a request for a building or demolition permit through the Mesa County Planning Department. The owners or contractors will follow the recommendations issued to the Planning Department by the Colorado Department of Public Health and Environment through the Building Permit Survey Program.

In Title I uranium mill tailings impacted communities, property owners bear the
costs of excavating, stockpiling, and transporting uranium mill tailings contaminated materials to the interim storage facility, a licensed disposal facility, or to the GJDF. Prior to moving material to the interim storage facility, the owner must coordinate with the Colorado Department of Public Health and Environment. Prior to moving tailings material to the GJDF, the owner must contact the DOE.

The private parties or their contractors will follow the ALARA principle throughout all work with uranium mill tailings. See the ALARA section.
Health and safety

Ionizing radiation exposure concerns
Uranium mill tailings consist of sand-like wastes generated from the milling of uranium ores to extract “yellowcake,” a uranium oxide compound. These tailings contain most of the original radioactivity found in the unprocessed ores. Radioactive radium, thorium, lead and other elements in tailings are unstable and decay by ejecting alpha and beta particles from the nucleus and by releasing excess energy as gamma rays, all of which are forms of radiation. The radiation from the decaying tailings atoms has the potential to cause cancer in living tissues.

The main hazards from uranium mill tailings are from direct exposure to gamma radiation, inhalation of radon and its daughter products, and inhalation of airborne radioactive particles.

Based on a human health risk assessment conducted by the Department of Energy (DOE, 1989) gamma radiation exposure to the public from residual uranium mill tailings is expected to be below the 100 millirem per year exposure limit for the general public.

Radon is formed when the radium in the tailings decays. Radon then decays by ejecting alpha and beta particles and forms a series of short-lived radioactive products. The particles ejected by radon and its products cannot travel very far in air and cannot penetrate the skin, thus are not an external hazard. However, if inhaled, these particles can cause damage to the lungs that could eventually result in lung cancer. Radon is found naturally in air in small amounts. Exposure to radon becomes an increasing health hazard as it accumulates to higher levels in buildings (or mines) and is inhaled for extended periods.

A third potential source of radiation exposure is radioactive particles (dust) associated with the tailings that can become airborne. Once airborne, these
particles can be inhaled, with subsequent exposure to the respiratory tract. Airborne particulate contamination is routinely controlled to negligible concentrations by the application of water mists or sprays to equipment or tailings releasing dust. Dust masks can also be worn to control this exposure for workers.

The radiation exposures to utility workers excavating uranium mill tailings are greatest in trenches. Radon is heavier than air, and before dispersal occurs, will be at higher levels at the bottom of the trench. The radon levels are generally greatest when the trench is first opened up and lessen somewhat later due to mixing with air. Gamma radiation exposure is also more likely in a contaminated trench. There may be pure tailings in the bedding of the utility line and tailings mixed with the soils in the walls of the trench. The result is radiation exposure to workers from the sides as well as the bottom of the trench. If badges are not used to track actual exposures, the exposures can be roughly estimated. Using the average tailings activity, approximately 300 hours of trench work is allowable per year under this exposure limit. The local government or public utility and the Colorado Department of Public Health and Environment may consider additional rotations out of trench work when any individual worker has accumulated 100 hours of work in contaminated trenches in any given year as a safety buffer. Worker exposure should be minimized as much as possible.

Radiation risk analysis

The limit for radiation exposure from uranium mill tailings for non-radiation workers is 100 millirem per year in the Code of Colorado Regulations, 6 CCR 1007-1, Part 4.14.1, Radiation Dose Limits for Individual Members of the Public. This is the same as the US Nuclear Regulatory Commission’s limit in 10 CFR 20.1301. This is a total effective dose equivalent which includes both internal and external exposure, rather than only external exposure to gamma radiation. The allowable exposure for radiation workers is 5,000 millirem per year. Radiation workers are carefully and continuously scrutinized in a radiation worker health monitoring program.

The Department of Energy prepared a health risk analysis in 1989 for utility workers entering trenches that contain uranium mill tailings. The analysis calculated potential worst-case exposures to workers in trenches and compared them to the regulatory limit, (100 millirem per year above background for non-radiation workers, required by the Code of Federal Regulations (CFR), Title 10, Part 20).

The analysis was based on a series of hypothetical projects to remove uranium mill tailings surrounding buried utilities. Water line repairs were estimated to last 39 hours. It was assumed that an individual worker would be in the trench only 25 percent of the time due to scheduling rotations. Thus, 10 hours per year
of exposure was allotted to water line repairs. Approximately eight hours of exposure was allotted to sewer line work with an individual spending only 10 percent of the time in a contaminated trench. Extra exposures were added to account for potential manhole repair. Therefore, two hours of exposure was used in the calculation for sewer line work.

Twelve total hours (10 for water lines and 2 for sewer lines) of yearly potential exposure at the highest, worst-case radiation levels detected in trenches gives an estimated exposure of 9.6 millirem to a utility worker, or 1/10 of the 100 millirem limit.

No exposure limit or regulation exists for radon in outside air, except for uranium and thorium mill tailings disposal cells. For indoor air, the Environmental Protection Agency has set a voluntary suggested indoor action level at 0.02 Working Levels (WL). This equates to about one working level month per year. The highest radon levels encountered in trenches during the analysis were 0.058 WL. The potential annual working level months-per-year after exposure to 0.058 working levels for 12 hours is 0.004 working level months-per-year, which is well below the Environmental Protection Agency indoor action level.

The conclusion of the Department of Energy health risk analysis is that based upon these presumptions, “there is no clear present or future health risk to utility workers in Mesa County due to potential gamma or radon exposure, even based upon the worst-case scenarios.”

As low as reasonably achievable (ALARA)

Even though the Department of Energy’s risk assessment demonstrated that risk to utility workers in trenches containing uranium mill tailings is expected to remain below regulatory limits, the Colorado Department of Public Health and Environment supports adherence to the ALARA philosophy, as stated in Part 4.5 of the Regulations, to limit exposure to levels less than the regulatory requirement.

ALARA is an approach to radiation protection to manage and control exposures (both individual and collective to the work force and the general public) and release of radioactive materials to the environment at levels as low as is practical below the regulatory requirement, taking into account social, technical, economic, practical and public policy considerations. As used in this context, ALARA is not a dose limit but a process, which has the objective of attaining doses as far below the applicable controlling limits as is reasonably achievable.

The ALARA principle will be the primary philosophy and tool used for controlling
radiation exposures during all activities of managing uranium mill tailings. The ALARA principle will be implemented by the use of the following requirements to control exposure:

- The upper limit of gamma exposure allowed will be 15 millirem per year. Supervisors of local government and utility workers should maintain records regarding the number of hours of exposure for their employees who work near uranium mill tailings. If badges are not used to track actual exposures, the exposures can be roughly estimated. Using the average tailings activity, approximately 300 hours of trench work is allowable per year under this exposure limit. The local government or public utility and the Colorado Department of Public Health and Environment may consider additional rotations out of trench work when any individual worker has accumulated 100 hours of work in contaminated trenches in any given year, in order to ensure worker protection.

- When possible, the local government or public utility should consider establishing a control area around exposed tailings. Only trained personnel should be allowed into the controlled area. Individuals entering the controlled area will limit the amount of time spent within the controlled area. Individuals will position their work as far from the contaminated areas as possible. Only necessary equipment or tools will be allowed into the controlled area. Uranium mill tailings contaminated areas will be fenced off from the public during non work hours. No unauthorized entry into the controlled areas is allowed by the public.

- No visible dust is allowed to leave the controlled area. Dust will be controlled through the use of water sprays. However, spraying should be limited to the amount necessary to keep the excavation dust-free, but should not create runoff from the excavation.

- No eating, drinking, chewing, or smoking is allowed in the controlled area.

- All equipment and personnel in contact with tailings will be surveyed with a radiation meter. If contamination is present, they must undergo decontamination. Haul trucks and contaminated personnel will be frisked with a radiation meter to verify decontamination. Surface meter readings should be under 18 µ R/hr (microRem [Rem = roentgen equivalent man] per hour) or equivalent. Wash hands often and always before eating.

- Haul trucks will be covered with a tarp to prevent windblown tailings during transportation. If the tailings are wet or have the potential of leaking out, a plastic sheet should be positioned in the tailgate to contain
tailings.

- If a spill occurs, the spill procedures must be followed (see “Transport of Tailings”).

- If possible, all tailings should be removed from the site during initial operations. At a minimum, tailings deposits excavated from the top three feet of an excavation should not be placed back into the excavation. These tailings should be removed and transported to a controlled onsite stockpile or to the interim storage facility. Clean fill should replace tailings deposits for up to three feet from the ground surface. If this is not readily performable, a cap of 6 inches in non traffic areas and 18 inches in high traffic areas should be placed over the tailings at a minimum. This should be placed over stockpiled material as well and a soil tackifier should be applied to minimize weathering. This tackifier should be applied to all temporary stockpiled tailings if stored over 30 days or if weather conditions indicate that tailings may be spread from the stockpile.

Training

Colorado Department of Public Health and Environment
The Colorado Department of Public Health and Environment employees responsible for implementing the Uranium Mill Tailings Management Plan, and State of Colorado employees who may receive radiological exposures in the workplace, will be provided with training and be proficient in the following areas:

40 Hour Hazardous Waste Training
8-hr Refresher Training

The department will provide training for local government and public utilities workers or private owners and agents upon request. Training topics may include:

- Basic Health Physics
- Radiation Exposure Limits and Monitoring
- Excavation and Transport Procedures
- Survey Meter Operation
- The ALARA Principle
- Decontamination Procedures
Local governments and public utilities
It is recommended that local governments and public utilities workers who may potentially be exposed to uranium mill tailings receive training in the following areas:

Radiological Worker Training
Radiological Refresher Training

The workers for these agencies will attend on-site briefings to review uranium mill tailings management procedures before beginning work in an area known to contain uranium mill tailings. The Colorado Department of Public Health and Environment or the local government/public utility supervisors will conduct the briefings.

Excavation procedures

Radiation survey
A gamma radiation survey instrument will be accessible to excavation crews working in areas known to be contaminated with uranium mill tailings. The instrument will be provided on loan by the Colorado Department of Public Health and Environment and will be capable of detecting uranium mill tailings in the range of 0-1000 micro Roentgen per hour (μR/h).

A field operations check on the instrument will be performed before surveying for uranium tailings contamination.

Refer to Appendix D - Generic Survey Procedures for more detailed procedures.

Identifying contaminated material
For purposes of this plan, residual uranium mill tailings will be identified based on a reading of 30 percent above the normal background gamma radiation. A reading of 14 μR/h is generally considered the average for western Colorado soils. As such, the background gamma plus 30 percent results in a value of 18 μR/h. Any reading of 18 μR/hr or 30 percent above background, whichever is higher, may indicate uranium tailings contamination. In non-habitable areas (and non-habitable in the future), a reading of 20 μR/h is allowable. Every area with potential contamination is to be evaluated and handled individually based on consultation with the Colorado Department of Public Health and Environment. For purposes of this Uranium Mill Tailings Management Plan, and in adherence to the ALARA principle, hot spots will be removed and area averaging is not allowed.
Uranium mill tailings contamination may be in surface deposits or buried, especially in utility trenches. Where applicable, the Department of Energy supplemental standards maps may be used to generally indicate potential areas of contamination. Prior to surface penetration, a check shall be made with a scintillometer. After a trench is excavated, the meter shall be lowered for spot checks along the length of the excavation. Any suspicious gray or purple sands should be particularly checked. Tailings are often mixed with soils and appear to be normal dirt.

Excavation

Controlled areas
If tailings are identified, a controlled area shall be established, extending 10 feet from the edge of the deposit. Once tailings are identified, tailings excavation procedures and ALARA principles immediately become effective. The supervisor/property owner is responsible for enforcement of the procedures.

Hazardous wastes
Uranium mill tailings contaminated areas shall be inspected for asbestos, visible discoloration, odd smells, or for materials such as car batteries or transformers. Mixing of hazardous wastes with the tailings will probably cause the deposit to be considered a commingled waste. Commingled wastes, if above regulatory limits, and untreated, cannot be hauled to the Grand Junction Disposal Facility. Material hauled to the Grand Junction Disposal Facility must meet the Department of Energy’s Waste Acceptance Criteria.

Commingled wastes are regulated with specific handling and storage requirements. The Colorado Department of Public Health and Environment shall be notified immediately upon suspicion of such wastes. These deposits shall not be excavated until approved for removal from the Colorado Department of Public Health and Environment. Commingled wastes shall be segregated and stored separately from the other non-commingled tailings and clean soils. The local government, public utility, or private owner will be responsible for
managing commingled wastes in accordance with applicable hazardous waste regulations.

Avoiding over excavation
If uranium mill tailings need to be excavated, the amount of material disturbed or removed should be minimized. Over excavation causes extra handling costs and fills the limited permanent storage room available in the Grand Junction Disposal Facility. Appropriately sized equipment should be used based on the size of the deposit to be excavated. If the tailings cannot be directly loaded onto transportation, stockpiled tailings should be placed onto concrete or plastic sheeting to delineate and separate from clean soil.

Uncontaminated overburden shall be removed and segregated from uranium mill tailings below. Only uranium mill tailings contaminated materials shall be transported to the interim storage facility or Grand Junction Disposal Facility. Care shall be taken to avoid mixing contaminated soils with uncontaminated soils. The radiation meter shall be used to identify soils in question.

The uranium mill tailings contaminated areas considered for removal will be visibly marked for the machine operator. This is to segregate the contaminated material and avoid mixing. Spray paint, colored flags or fencing are appropriate to delineate the uranium mill tailings contaminated areas. Continuous radiation monitoring should be conducted to ensure that only tailings (and not clean soils) are removed for disposal.

No trash, wood, tires or other non-contaminated solid waste shall be shipped to the interim storage facility or GJDF. Such materials may be decontaminated and disposed of as solid waste. Care shall be taken to segregate uncontaminated concrete from contaminated concrete (It has been our experience that uncontaminated concrete is the material that most often is improperly brought to the interim storage facility). Contaminated concrete or asphalt shall be sized properly to allow compaction at Grand Junction Disposal Facility. No debris shall be larger than 3 feet in any dimension. No pipe shall be longer than the width of the truck bed or trailer used to transport the material. All materials shall be sized in accordance with the Department of Energy’s Waste Acceptance Criteria for the Grand Junction Disposal Site.

On-site disposal
Proper disposal of tailings is the best long-term solution. However, in some cases, particularly in Title I communities outside of the Grand Junction area, transportation to the ISF or GJDF is not feasible. In these situations, uranium mill tailings can be re-buried on site, provided that the following conditions are met:
1) A discussion with the Colorado Department of Public Health and Environment about disposal options prior to any excavation activities must be conducted.

2) Tailings may be returned to the original excavation, in a last out-first in order.

3) The tailings should be re-buried under a minimum of 6 inches of clean soil. In some cases, the Colorado Department of Public Health and Environment recommends using up to 18 inches of clean soil cover, if the area is prone to erosion by wind or water, or is in a high exposure/traffic area. Reburied tailings should be separated from groundwater by at least one foot.

4) A written record that indicates the approximate volume of material that was re-buried, the meter reading for the material, the approximate depth of burial, and the burial location, shall be submitted to the Colorado Department of Public Health and Environment. These records shall also be maintained in perpetuity by the property owner, provided to any subsequent owner and to any contractors performing work on the property.

Stockpiling
Stockpiling of uranium mill tailings contaminated material should be avoided whenever possible. Stockpiling may cause concerns to property owners and neighbors, and may present an exposure hazard. Stockpiling on the same property that the tailings came from is allowable, but not advisable. Tailings may not be removed from the original property except to be taken to a licensed disposal facility, the interim disposal facility at the City of Grand Junction’s yard, or the Grand Junction Disposal Facility in Whitewater, CO. Stockpiled material should be fenced from public access, and must be covered or a tackifier applied to prevent wind and water erosion. Stockpiles should not be left in place longer than 60 days. If it is necessary to leave them longer than that, or if inclement weather is imminent, they must be properly covered or sealed.

Asphalt
When working with asphalt placed over uranium mill tailings contaminated soils, care shall be taken to not penetrate into the tailings and/or mix the tailings with the asphalt. If tailings are mixed with the asphalt, the asphalt should be inspected with a meter. If the mixture shows a meter reading of 30 percent above the radiological background (or 18 uR/hr, whichever is greater), it is considered contaminated.

Asphalt removed from over uranium mill tailings contaminated soils should be inspected on the underside with the survey meter. If excavation into the bedding material is necessary, care must be taken to segregate contaminated and
uncontaminated materials.

Water main breaks
If uranium mill tailings are washing away due to a water line break, sediment dams shall be established to halt the spread of contamination. Following repair of the break, a radiation survey should be conducted downstream to insure that any contaminated materials spread by the break are identified and are cleaned up. Any material exceeding 30 percent above background (or 18 µR/hr, whichever is greater) should be returned to the excavation or taken to the interim storage facility.

Decontamination
All equipment used for excavation or hauling of tailings shall be inspected and decontaminated. Visible tailings shall be swept or sprayed, contained and placed in the ISF.

Workers in contact with tailings shall be decontaminated. Visible tailings shall be swept or washed away. These workers shall be frisked for verification of decontamination (See Appendix B). If clothing will not pass the frisk, the workers shall change into clean clothing. Contaminated clothing and contaminated decontamination materials shall be taken to the interim storage facility for further decontamination and frisking or disposal. The Colorado Department of Public Health and Environment will be available to assist in these operations.

Cease work
Work shall cease when the project supervisor or the Colorado Department of Public Health and Environment determines that the procedures have not or cannot be followed. Examples include: high winds making it impossible to control dust, a truck that leaks tailings or non-cooperation of workers. Work may be resumed when the supervisor and the Colorado Department of Public Health and Environment determine that the procedure issue has been resolved and it is safe to resume work.
Transport of tailings

Regulations
Transportation of radioactive material over public roads in Colorado is regulated under Colorado Revised Statute 42-20. In the definition of hazardous materials in C.R.S 42-20-103, mill tailings are excluded. This means that uranium mill tailings are not regulated as a hazardous material for the purpose of transportation by the State of Colorado.

Hauling
The ALARA principle will be followed during transportation of tailings. This will be ensured by covering and not overfilling loads to prevent dust or spillage. If very wet or fine-grained material is to be loaded, a plastic sheet diaper will be placed in the rear of the truck bed in a manner to exclude leaking out the tailgate. Loads should not be piled any higher than the sidewall of the truck. The most direct route possible with no off-road stops will be used to transport tailings to the interim storage facility. All loads will be covered to ensure that no tailings are blown out during transport.

Spill procedure
When transporting mill tailings, if a spill from the haul truck occurs, the supervisor and the Colorado Department of Public Health and Environment will be notified as soon as possible. The spill will be isolated and protected from further dispersal. Traffic cones and flagmen will be used as necessary for traffic safety. The truck should pull off the road if possible. If there has been an accident, the driver should call the state patrol, police, or 911, as necessary. Drivers should also call the State of Colorado 24-hr Environmental Release/Incident Report Line at 1.877.518.5608. Traffic safety has priority over isolating or cleaning up the spill.
The spill will be swept up and put into a closed container appropriate to its volume and transported to the interim storage facility or other licensed disposal facility for disposal. The area is considered clean if no contamination is seen or detected by a radiation survey. If the spill was onto a dirt road, the radiation survey meter will be used to verify the spill cleanup. If no readings above 18 μR/h are noted on the gamma survey meter, the area is considered clean.
Appendix A

Definitions

Access control: A designated entrance/exit point to a controlled area.

ALARA: Acronym for “As Low as Reasonably Achievable,” a basic concept of radiation protection that specifies that radioactive discharges from nuclear plants and radiation exposures to personnel be kept as far below regulatory limits as feasible.

Alpha particle: A positively charged particle ejected spontaneously from the nucleus of some radioactive elements. It is identical to a helium nucleus and has a mass number of 4 and an electrostatic charge of +2. It has low penetrating power and short range. The most energetic alpha particle will generally fail to penetrate the skin. Alphas are hazardous when an alpha-emitting isotope is introduced into the body.

Beta particle: A charged particle emitted from a nucleus during radioactive decay. A negatively charged beta is identical to an electron. A positively charged beta particle is called a positron. Large amounts of beta radiation may cause skin burns. Beta emitters are harmful if they enter the body. A thin sheet of metal or plastic easily stops beta particles.

Grand Junction Disposal Facility (GJDF): The Uranium Mill Tailings Remedial Action Program disposal cell, operated by the Department of Energy, located about 15 miles south of Grand Junction on U.S. Highway 50, will remain open until the year 2023 or until filled. The GJDF is the only permanent disposal cell available for Title I uranium mill tailings disturbed by construction activities. This disposal cell was previously known as the Cheney Disposal Cell and was renamed in 2012.

Contamination: Unwanted radioactive materials (uranium mill tailings) that are present on/in a particular object or area. It can also refer to other contaminants such as asbestos.

Controlled area: Any area to which access is managed in order to protect individuals from exposure to radiation and/or radioactive material. Individuals who enter a controlled area are not expected to receive a total effective dose equivalent of more than 100 millirem in one year as required by the Nuclear Regulatory Commission.
Decontamination: The reduction or removal of contaminating radioactive material from a structure, area, object or person.

Frisk: A radiological survey of personnel or equipment utilizing a portable radiation detector.

Gamma ray: High-energy, short wavelength electromagnetic radiation (a packet of energy) emitted from the nucleus of an unstable atom. It is very penetrating and is best stopped by dense materials such as lead. They are similar to X-rays but are more energetic.

Interim Storage Facility (ISF): The facility located in Grand Junction available for temporary storage of uranium mill tailings disturbed during construction activities. The interim storage facility is located on the City of Grand Junction property at 333 West Ave, Grand Junction, CO and managed by the Colorado Department of Public Health and Environment. The ISF is accessible by appointment only.

Radiation: Particles (alpha, beta or neutrons), or photons (gamma) emitted from the nucleus of an unstable (radioactive) atom as a result of radioactive decay.

Radioactive: Exhibiting radioactivity or pertaining to radioactivity.

Radioactivity: The spontaneous emission of radiation, generally alpha or beta particles often accompanied by gamma rays, from the nucleus of an unstable atom.

Uranium mill tailings: Radioactive residues from the processing of uranium ore into yellowcake in a mill. Although the milling process recovers about 93 percent of the uranium, the residues, or tailings, contain several radioactive elements, including uranium, thorium, radium and polonium.

Yellowcake: A product of uranium milling process, yellowcake is a solid uranium oxide compound (U₃O₈) that takes its name from its color and texture. Yellowcake is the feed material for fuel enrichment and fuel pellet fabrication.
Appendix B

Frisking and decontamination procedure

Interim storage area frisking

Purpose
Prior to exiting the controlled area at either the jobsite or the ISF, vehicles and personnel shall be surveyed for radioactive material. This procedure is commonly referred to as “frisking”. Frisking for contamination will limit exposure of the workers and the general public to radioactive material and prevent the spread of contamination beyond controlled areas.

Applicability
This procedure applies to all people entering and exiting the controlled area at a jobsite or the ISF.

Precautions
All personnel who enter a controlled area (the interim storage facility or an excavation into tailings) are expected to keep their exposures to radiation and radioactive materials as low as reasonably achievable (ALARA).

Personnel or equipment may not leave the interim storage facility with any detectable radioactive contamination.

Frisking survey meter
A portable monitor, such as the Ludlum Model 44-9, pancake GM beta-gamma detector, or equivalent, shall be used for frisking. The frisking instrument shall have a valid calibration and be functionally checked before using this procedure.

Equipment for frisking and decontamination

<table>
<thead>
<tr>
<th>Frisking meter</th>
<th>Broom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturdy brush</td>
<td>Wash tub</td>
</tr>
<tr>
<td>Mild soap</td>
<td>Laundry soap</td>
</tr>
<tr>
<td>Garden hose</td>
<td>Frisking log</td>
</tr>
</tbody>
</table>

Frisking procedure
Personnel shall frisk using the techniques defined. Personal items such as flashlights, notebooks or hats shall be subject to the same frisking requirements.
as the person carrying them.

Verify the instrument is in service, set to the proper scale, and the audio output can be heard during frisking.

Hold the probe less than half an inch from the surface being surveyed.

Move the probe slowly over the surface, approximately two inches per second.

If the count rate increases during frisking, pause for 5 to 10 seconds over the area to provide adequate time for instrument response.

If the count rate increases beyond background, the area shall be decontaminated and frisked again.

Personnel frisking order

Frisk the hands before picking up the probe.

Frisk in the following order:
- Head (pause at the mouth and nose for five seconds)
- Neck
- Arms (pause at the elbows)
- Chest and abdomen
- Back, hips and seat of pants
- Legs (pause at the knees and cuffs)

Shoes
- Shoe bottoms
- Personal items (hat, gloves)
Decontamination

Personnel decontamination
Skin contamination may be removed by washing with lukewarm water and mild soap.

Personnel may flush ears/eyes with cool, clear water to decontaminate those areas. If flushing is not successful, qualified medical personnel shall direct additional decontamination efforts.

Clothing and shoes may be brushed clean. If clothing will not decontaminate with brushing, it shall be removed and exchanged with the supplied coveralls in the access shed.

Contaminated shoes may be brushed and washed without removing and re-frisked.

Equipment and truck decontamination
Prior to frisking a truck, the vehicle engine will be shut off, placed in 1st gear and have the wheels chocked. No person shall physically go beneath a piece of equipment to perform inspections or decontamination.

All visible contamination shall be swept or washed into the interim storage facility. Tailgate areas and tires will be frisked with the probe at two inches per second and with the probe half inch from the surface. If the instrument rate count registers above background, further brushing and washing will be performed until it is deemed acceptable.

Exiting the interim storage facility
Return the frisk probe to its holder. The probe shall be placed face up to allow the next person to monitor his/her hands before holding the probe.

After decontamination of equipment and personnel and successful frisking, personnel may leave the controlled area, sign out on the access/frisking log, secure the gate and shed and exit the area.
Appendix C

Building permit surveys

Building permit survey history
In 1971, the Colorado Department of Public Health and Environment, formerly the Colorado Department of Health, began a cooperative program with the Mesa County Planning Department to conduct radiation surveys at new construction sites. The radiation surveys were integrated into the building permit process, and it was therefore called the Building Permit Survey Program.

As discussed in the History section of the Uranium Mill Tailings Management Plan, radioactive tailings were used in Mesa County and other uranium mill towns for building materials and fill dirt. Many structures were modified or built with and over tailings. Therefore, potential health risks were being created due to the increased gamma radiation and radon exposure.

Surveys are performed by the Colorado Department of Public Health and Environment before a building permit is issued. The surveys include the footprint of the proposed building, plus 10 feet extra around the perimeter. After the survey, an inspection form is filled out indicating that no radioactive materials were found or with recommendations for removal, or other options, if tailings are found. The form is given to the owner (or contractor) with a copy entered into the Colorado Department of Public Health and Environment database. If tailings are found, a map is drawn indicating the areas of concern.

When tailings are removed from a building site, another form is filled out declaring the removal of the contamination, which allows the issuance of the building permit. Copies of the information are entered into the Colorado Department of Public Health and Environment database for reference and documentation.

The survey is considered valid for six months, after which time another survey may be necessary if the structure hasn’t been constructed. After six months, there is the possibility that site conditions may have changed.

Building permit surveys are required for all structures that could possibly be converted into living spaces. During the oil shale boom, people were known to live in sheds or any space available. Garages are often converted into living spaces, many times without proper permits. Thus, sheds and garages, as well as business sites and houses, may require surveys. Areas such as patios, carports and porches are also inspected as these are often enclosed later to become part of the living space.
Currently, the Colorado Department of Public Health and Environment surveys demolition sites and building sites in Mesa County. The Colorado Department of Public Health and Environment prioritizes surveys on properties or areas with a known history of tailings. New subdivisions in previously undeveloped areas are less likely to encounter uranium mill tailings.

Procedures for the requirement of a building permit survey

Upon receiving a request for a building permit survey, a record review will be performed by the Colorado Department of Public Health and Environment to ascertain the need for a field survey. The review will include the Colorado Department of Public Health and Environment survey records, and, if necessary, the Department of Energy records for each location.

The following criteria will result in the execution of a field survey:

1. Records indicate the presence of historic tailings or ore. Historic tailings properties will always be surveyed, even if remedial action took place. Remedial actions did not always find or completely remove tailings.

2. Tailings have been found on an adjacent property. Adjacent properties will be surveyed if it is in an area where extensive tailings were used.

3. For information: Occasionally, the Colorado Department of Public Health and Environment will perform information surveys in areas where previous surveys have not been performed. For instance, surveys may be performed on several properties in previously undeveloped areas. These surveys are based visual observations, radiation readings, fill areas, or geography.

If it is determined that a survey is not not necessary, the program assistant will issue a Building Permit Records form, sign the form and give it to the requestor. The other copy is filed and entered into the database. The Building Permit Records form indicates, “No field survey is required based upon a record review of the vicinity of the building site. No tailings deposits were identified from available records that would affect the construction site.”

In communities outside of Mesa County, the Colorado Department of Public Health and Environment will provide assistance to monitor construction and demolition sites with a history of tailings involvement, if requested. The Colorado Department of Public Health and Environment data and files may be used to determine if a site needs a radiation survey. The department may perform site visits to conduct the surveys if the database information is inconclusive.
Gamma radiation surveys

Objectives of gamma surveys
The objective of a gamma survey is to determine if radioactive materials, especially uranium mill tailings, are present on individual properties, to acquire sufficient data to evaluate the gamma levels and health risks, and to document the location and conditions of radioactive materials. Uranium mill tailings are the primary radioactive materials being surveyed, due to their radium content (gamma ray emitter) and potential to cause elevated radon gas in structures. The gamma surveys may locate natural soils, rocks or ores that have elevated gamma radiation and have the potential to increase indoor radon levels. The gamma survey may also locate and identify other radioactive sources such as ore or petrified wood, which may not have a potential to increase radon, but increase health risks through gamma exposure.

Background gamma radiation
Background radiation is the natural radioactivity of an area. Background radiation varies due to the influence of natural mineral deposits, building materials and elevation. The most common outside background levels in Mesa County are 10 to 14 microR (micro roentgens per hour μR/h). A meter reading 30 percent higher than the local background level is significant and requires investigation.

Non-tailings gamma sources
There are many different radioactive materials besides uranium mill tailings that may be encountered during a gamma survey. Luminous-dial compasses, clocks, aircraft instruments, propane tanks, petrified wood, dinosaur bones and ore samples may emit gamma radiation levels well above 18 μR/h. Natural outcroppings of granite rocks may demonstrate elevated gamma radiation. These objects may act as point sources, as the gamma field drops off rapidly when the survey meter is moved away. Coal ash and shale may also cause meter readings above 18 μR/h, but seldom appear as point sources. Brick may cause readings of up to 22 μR/h due to the materials used in their manufacture. Some granite countertops exhibit meter readings far in excess of 18 μR/h as well.

Interpretation of readings

Shine
Radiation detected that is from a source some distance away is called shine. Shine will make it more difficult to determine the levels of radiation from nearby objects. The meter readings are higher than if the shine radiation did not exist. An example of a shine source is a large pile of radioactive tailings or large radioactive ore pile. Shine fields are also created by strong local radioactive sources such as density gauges or metal weld X-ray devices.

To check for shine, the meter reading can be compared at ground level, waist level and overhead. If a shine field is present, the meter will detect about the same radiation levels at waist and surface levels.

Lead shielding can be used to help interpret meter readings in a shine field. A lead shield may be wrapped around the sides of the meter to block the shine.

A comparison of shielded meter readings and unshielded readings, called a differential, may help distinguish localized elevated gamma levels from shine. A sheet of lead is placed between the instrument and the suspected area, and a meter reading is taken. The shield is removed, and a second meter reading is taken. The difference between the shielded and unshielded reading is the differential. The differential should not be greater than six for background radiation areas around 14 μR/h. If the differential is greater than six, the area under the shielding may be contaminated with a radioactive source. This technique loses accuracy as higher gamma fields are encountered.

The Colorado Department of Public Health and Environment will provide assistance if a shine field is suspected and the meter readings are difficult to interpret.

Geometry
A meter reading in a hole or trench may indicate higher radiation levels than a flat surface. The meter receives gamma radiation from many directions in a hole, while a surface reading mainly detects the area beneath it.

Shielding
Dense materials shield gamma radiation from detection. Examples are rock road base, asphalt, concrete and hard packed soils. The amount of shielding depends upon the thickness and density. Radiation surveys over asphalt or concrete need to be performed more slowly so that the technician can observe small fluctuations on the meter. While normal soils reading 14 μR/h usually indicate no contamination, this reading on asphalt or concrete may indicate a shielded radioactive deposit.
Standard gamma survey procedure

Survey instruments
The survey instruments used by the Colorado Department of Public Health and Environment and loaned to local governments, public utilities, and private parties are adequate to locate uranium mill tailings situated close to the ground surface. If a deposit is heavily shielded, the meter may not indicate any change from background radiation. The meters are calibrated yearly and should be given an operations check before use. Many of the instruments have been calibrated and electronically modified to give a fast response time. Instruments with an audio device are the easiest to use as one can notice the faster change in the sound (clicking speed), which is an indication of a radioactive source. The instruments are designed to give a meter reading in micro roentgen per hour. If the surveyor’s meter shows 18 μR/h on the scale or 30 percent above background, whichever is higher, tailings contamination may be present.

Permission to survey
Permission to access private property must be obtained before a survey is undertaken. The owner or owner representative may give verbal or written permission to enter a property. The surveyor should identify himself to residents on the property and state the purpose of the survey.

Health and safety
Performing a gamma radiation survey is not entirely risk free. The major hazards are potential physical injuries due to falling or being trapped in a confined space. The surveyor should comply with Occupational Safety and Health Administration (OSHA)-confined space entry requirements. Prior to entering any crawlspace, the surveyor should notify a coworker of the location and intent to survey. Some crawlspaces are too tight to enter safely. If such areas must be checked for a radiation source, an extension pole attached to a meter with audio capability would allow limited probing into the tight areas.

No hole or trench deeper than 4 feet or with sides steeper than a 45-degree angle should be entered unless the sidewall stability conforms to OSHA standards. These areas, as well as vertical cliffs, can be surveyed by lowering the meter on a rope and listening to the audio or observing the meter face with binoculars.

Head injuries can be avoided by not watching the meter while walking. Tree limbs, air conditioners, pipes and other extending objects are commonly at head level around houses. Using meters with the audio capability and watching the path of the survey will avoid injury.

Dogs are potentially a risk when surveying. Always ask the residents if there are
dogs present and to place them indoors or tie them up in an area not needed to be surveyed. Personnel should always be watching for dogs when entering a property.

Exposure to gamma radiation is a potential health risk to the surveyor. During the many years that the Colorado Department of Public Health and Environment has conducted gamma surveys, it is rare that the monitoring badges worn by surveyors record any exposures above background. It would be possible to receive limited gamma exposure if uranium ore samples were carried around in a vehicle. If ore is transported, it should be placed as far away from occupants as possible and removed from the vehicle and properly disposed of as soon as possible.

If the surveyor detects a radiation source above 1,000 micro roentgen per hour (one milli roentgen), and the source is not obviously ore or uranium mill tailings, the surveyor should immediately leave the area and notify the Colorado Department Of Public Health And Environment, Radiation Control Program. Such sources could be radium sources or instruments, such as moisture density gauges.

The surveyor is expected to adhere to the ALARA principle and keep all radiation exposures As Low As Reasonably Achievable.

Generic survey procedures

All gamma surveys will use generic procedures that address situations commonly encountered. These are centered on the readiness of the survey meter; interpretation of findings and investigating shielded radiation sources.

The survey meter must be checked for operation before use. The meter battery level and meter scales can be compared with historical levels by using known radioactive sources. If the instrument is in the field, and no radioactive check source is available, the meter can be placed on the ground and comparisons made between the different scales and background level.

Before surveying, the area background must be determined. Background is the normal radiation level in an uncontaminated area. Radiological contamination may be assumed if the meter registers 30 percent above background.

The survey should be conducted at a slow walk, using an established grid pattern, usually 3 feet apart. Specific spots may be checked by hesitating, placing the meter on the ground and noting the reading. Finer detail can be accomplished by narrower grids and slowing down the pace. The meter should be carried no more than one to four inches from the surface when walking with no wide arcing swings. The meter is placed in fast response mode on the lower
scale with the audio switch on.

When surveying areas with tall vegetation (weeds), the meter will have to be alternately lifted and lowered rather than maintaining a constant one to four inches from the surface.

Shielding will hide radioactive sources from detection. The survey may detect borderline elevated readings. These areas should be explored by removing some of the shielding. Dirt or gravel may be kicked aside or shoveled away. Asphalt and concrete may be checked from the edge where an inspection hole can be dug. Woodpiles and debris may be moved to find a spot to lower the meter to the ground. Water meter pits and manholes can be inspected by removing the cover and lowering the meter. Large manhole covers are heavy and may need a shovel or crowbar to pry it off and therefore may not be accessible. At no time will the Colorado Department Of Public Health And Environment conduct a survey where personnel safety may be compromised. Prior to the Colorado Department of Public Health and Environment arriving to perform a survey, the property owner should remove potential sources of shielding, so that the survey can be conducted quickly and efficiently.

Holes or trenches may register 30 percent above background, but due to the geometry may not be contaminated. Interpretation of meter readings in trenches and holes is difficult and usually requires experience and best professional judgment. It is not unusual for a water meter pit to read 18 μR/h on the survey meter and not be contaminated. However, if a water meter pit reads over 18 μR/h on the survey meter, one should be suspicious of possible uranium tailings. The Colorado Department of Public Health and Environment should be consulted when interpreting data from holes or trenches.

Specific survey procedures

Building permit survey (new structure)

In Mesa County, a cooperative program exists between the Colorado Department of Public Health and Environment and the City/County Planning Department to screen proposed building sites for uranium mill tailings. The generic survey procedures apply. Three-foot survey grids extending an extra 10 feet beyond the site footprint are usually adequate to screen for radioactive materials.

The Colorado Department of Public Health and Environment requires that the builder stake out the site footprint. If the site is not staked or marked at the time of the survey, the requester may mark it out and reschedule the survey. The property must be clear of hindrances or restrictions so that a valid survey can be completed. Dirt/gravel piles must be removed as well as any obstructions
for a survey. The Colorado Department of Public Health and Environment requires any proposed building site be officially addressed by the City/County Planning Department before any field gamma screening are performed or Building Permit Survey forms are issued.

If no unusual gamma radiation above background is detected, the Building Permit Survey form is completed, signed and issued to the builder for inclusion with paperwork submitted to the Planning Department for a building permit.

If elevated gamma radiation is detected, the surveyor will explore the area to determine the source. The elevated gamma area may be checked by digging out shovel scoops. This method often determines that the source of elevated gamma is a small ore rock or that the source is not extensive.

If an extensive gamma source is discovered that cannot be removed by a few shovel scoops, the Building Permit Survey form is filled out to reflect the finding and a map is drawn to locate and document the area and the builder notified.

The Colorado Department of Public Health and Environment presents options to owners to mitigate radiation sources discovered on building sites. The main concern is mitigation of potential radon sources inside the structure. The secondary concern is mitigation of gamma radiation exposure through the floors of the structure. The optimum solution is the complete removal of the source of radiation.

Building permit survey (demolition)
Structures being demolished in Mesa County are controlled through the permit system of the County Planning Department. Structures planned for destruction should be surveyed to locate any potential uranium mill tailings contamination in the building materials.

The lower levels and all floors made from concrete should be scanned using 3-foot grids. The inspection should also include closets, bathrooms, kitchens, fireplaces and chimneys.

Areas to survey include but are not limited to the following:

<table>
<thead>
<tr>
<th>Lower level floors</th>
<th>Cinder blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundations</td>
<td>Stucco</td>
</tr>
<tr>
<td>Brick and mortar</td>
<td>Sidewalks</td>
</tr>
<tr>
<td>Driveways</td>
<td>Rock walls/fences</td>
</tr>
<tr>
<td>Sandboxes</td>
<td>Rock gardens</td>
</tr>
<tr>
<td>Planters</td>
<td>Patios</td>
</tr>
<tr>
<td>Garages</td>
<td>Carports</td>
</tr>
</tbody>
</table>
If radioactive sources are discovered, the survey form is filled out, and the owner or contractor is notified. Options are discussed to separate radioactive contaminated materials from other debris. The radioactive materials can be located by the survey meter and marked with paint. Contaminated materials should be segregated and stockpiled or immediately taken to the interim storage facility. Uncontaminated material should not be transported to the interim storage facility. Items transported to the interim storage facility shall comply with the Department of Energy’s Waste Acceptance Criteria for the Grand Junction Disposal Site.

These procedures are in addition to the State of Colorado demolition permit processes.

Gamma radiation survey for information

The Colorado Department of Public Health and Environment has a vast database that documents the radiological conditions on tens of thousands of properties in western Colorado. However, many properties were never surveyed, and no information is available. Thus, the department will occasionally conduct a gamma survey on a property for information purposes.

Surveys on an entire property present a problem because of the size of the area. The grids for survey must be appropriate to the area. If the area is no larger than two acres, 10-foot grids are used. For very large areas, grids as large as 50 feet may be used.

The larger the grid size, the greater the chance of overlooking a radiation source. In the case of very large properties, the areas one inspects, like a potential building site, may be more important than walking the entire site on grids. Disturbed areas, likely dump areas, roads and gates should be inspected. Any structures should be checked using the techniques for demolition sites. Lawns, gardens, and septic systems should be checked. All concrete, metal debris, hoses, and fiberglass panels should be inspected.

If a linear pattern of elevated gamma readings is detected, it may indicate a buried utility line packed in uranium mill tailings. The Colorado Department of Public Health and Environment may assist in conducting large-area surveys, but the responsibility for a complete (non-building permit) survey on any property is that of the owner. A survey meter may be checked out (borrowed) from the Colorado Department of Public Health and Environment, or a consulting company/contractor may be hired by the property owner. However, the Colorado Department of Public Health and Environment will conduct complete surveys on building sites.
Streets, alleys and utility line construction
Prior to construction involving streets, alleys or utility lines, the contractors should consult Department of Energy maps delineating supplemental standard areas. City workers or their contractors using instruments on loan from the Colorado Department of Public Health and Environment can survey the areas. Identified uranium mill tailings contaminated areas can be marked with paint or flagged for later removal. As trenches and excavations are opened, the meter can be lowered down to better determine if the subsurface material is contaminated. If the contamination is to be removed, it must be segregated from other materials and transported to the interim storage facility. If it is not to be removed, the last out/first in procedure shall apply as well as the clean cover requirement (see On-site disposal section above.)

Surveys over concrete or asphalt should be conducted at a slow walk to give the meter time to respond. The meter must be in the fast response mode. Concrete and asphalt shield radioactive materials below, and meter changes may be only slightly higher than background when measured through them.

Private removals
Private removals are remedial actions performed by property owners or their contractors to clear an area, or entire property, of radioactive uranium mill tailings. The material may have been identified by the Building Permit Survey, an information survey or street/utility line construction.

For private parties, the Colorado Department of Public Health and Environment will be available to identify and delineate uranium mill tailings for removal. The identified contamination will be excavated by the owner and segregated from clean material by stockpiling on site or removal from the property to the interim storage facility with Colorado Department of Public Health and Environment approval. A meter may be checked out by the private party.

For private parties, the removal of uranium mill tailings can be monitored by the Colorado Department of Public Health and Environment to guide and document the excavation. The Department can perform excavation control, provide health and safety guidance and will facilitate the interim storage facility. The department will document the results of the removal and retain records.

Documentation maps
In Mesa County, maps are generally required for the documentation of radioactive contamination discovered or removed during a Building Permit Survey, information survey or private removal. The Colorado Department of Public Health and Environment will map and document any uranium tailings discovered, disturbed or removed from the communities in western Colorado that were not already mapped, as appropriate.
The map will include the following information:

Location number (assigned by the department)
Street address, date and name of surveyor

The map will include a legend with an arrow indicating north. Permanent and semi-permanent reference points, such as structures, streets, driveways, power poles or irrigation ditches, will be drawn on the map.

Shading with cross marking or other appropriate indicators should show areas of radiation contamination. The meter readings for the contamination should be written in the contaminated area. If the area is too small to write in, the meter reading should be indicated by an arrow drawn to the contaminated area.

If a private removal of radioactive contamination occurs, the documentation may include a map showing the conditions of the area after excavation. If the area is large, a range of readings will be shown. The gamma reading and an arrow pointing to the spot will identify areas still demonstrating elevated gamma readings.